Lunar Calibration: Using the Moon as a Calibration Source for Earth-Observing Instruments in Orbit

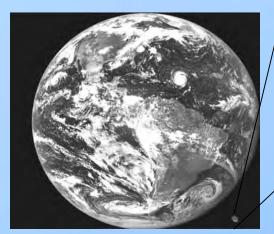
Tom Stone US Geological Survey, Flagstaff AZ, USA

Hugh Kieffer Celestial Reasonings

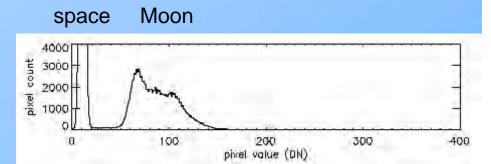
CLARREO Workshop

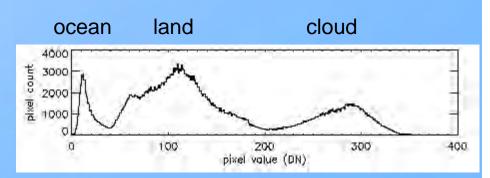
17-19 July, 2007

Outline


- The Moon as a radiometric source
 - USGS lunar calibration program
- Current capabilities of lunar calibration
- Ongoing development, needs
- Future improvements: LUSI proposal

The Moon as a radiometric source


- Available accessible to all spacecraft in Earth orbit
- Surface reflectance is stable to <10⁻⁸ per year¹
- Dynamic range similar to that of clear land


Extracts from GOES full-disk image:

GOES-12 vis channel 2004 August 30 17:45:14

The Moon as a radiometric source

- Brightness is highly variable with geometry
 - phase, spatial non-uniformity, lunar librations, complex reflectance function

This variability mandates using a photometric model for calibration uses.

- Need to accommodate the geometry of illumination and viewing for a spacecraft lunar observation without restriction
- The stability of the lunar surface reflectance means that a model, once established, can be applied to observations made at any time
- In order to capture the lunar radiometric behavior sufficiently for modeling, a multiple-year database of measurements is required

The NASA-funded lunar calibration program at USGS has focused primarily on modeling the quantity of spatially-integrated lunar irradiance.

 Model basis is a dataset of lunar radiance measurements (images) acquired by the ground-based RObotic Lunar Observatory (ROLO)

ROLO observational program

Dedicated observatory, located at USGS in Flagstaff, AZ Altitude 2143 m

- Dual telescopes
 - -23 VNIR bands, 350-950 nm
 - -9 SWIR bands, 950-2500 nm

- Spatially resolved radiance images
 - 6+ years in operation, >85000 lunar images
 - Coverage in phase from eclipse to 90°, all librations viewable from Flagstaff
 - >800,000 star images, for nightly atmospheric extinction corrections

USGS lunar irradiance model

Model inputs for fitting are developed from images calibrated to exoatmospheric radiance, spatially integrated to irradiance I, and converted to reflectance A_k :

$$I_k = A_k \cdot \Omega_M E_k / \pi$$

 $E_k = ext{Solar spectral irradiance}$ $\Omega_M = 6.4236 \times 10^{-5} ext{ sr}$

Empirical model form, for band k:

$$egin{aligned} \ln A_k &= \sum\limits_{i=0}^3 a_{ik} g^i + \sum\limits_{j=1}^3 b_{jk} \Phi^{2j-1} + c_1 heta + c_2 \phi + c_3 \Phi heta + c_4 \Phi \phi \ &+ d_{1k} e^{-g/p_1} + d_{2k} e^{-g/p_2} + d_{3k} \cos((g-p_3)/p_4) \end{aligned}$$

g = phase angle

 $\theta = \text{observer selenographic latitude}$

 $\phi = {
m observer}$ selenographic longitude

 $\Phi = {\rm selenographic}$ longitude of the Sun

Ref.: Astronomical Journal 129, 2887-2901 (2005 June)

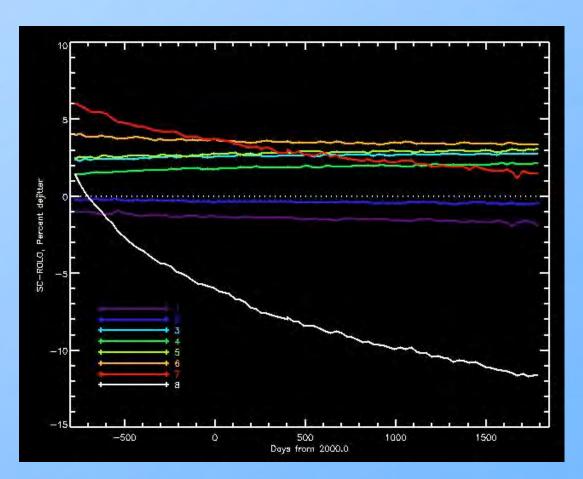
USGS lunar irradiance model

- 18 coefficients for each ROLO band, 8 are constant across all bands
- ~ 1200 observations fitted for each band
- Mean absolute fit residual over all 32 bands is 0.0096 in ln A, ~1%

This is a measure of the model's capability to predict the lunar irradiance over the full range of phase and libration angles covered

Comparison of lunar irradiance measurements made by an instrument involves a maximum uncertainty due to the model geometric precision ~1%

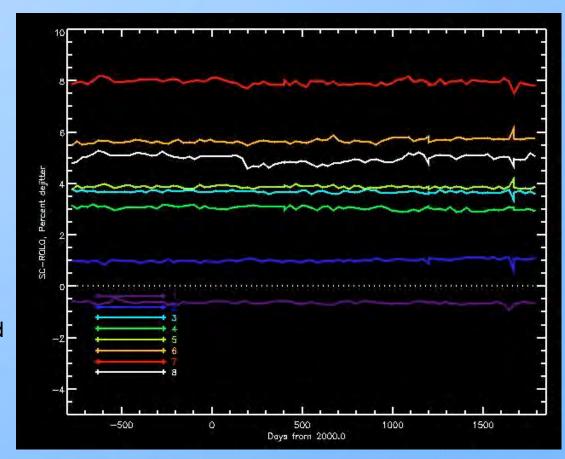
- for any geometry of illumination and viewing (phase and libration)
- restriction to narrow range of phase angles is not a requirement for lunar calibration

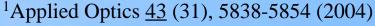

Current capabilities — sensor stability monitoring

Given a time series of lunar views acquired by a spacecraft instrument, relative response trending with sub-percent precision can be achieved.

Example: SeaWiFS

- plot is 85 lunar observations (SeaWiFS now has over 160)
- ordinate is discrepancy: [inst/ model -1.] \times 100%
- the lunar comparisons show sensor response degradations of ~5% in band 7 and ~13% in band 8


SeaWiFS lunar image, ~6×20 pixels
2007 CLARREO Workshop



After correction for sensor degradation based on lunar views, residual SeaWiFS band response trends are < 0.1% per year¹

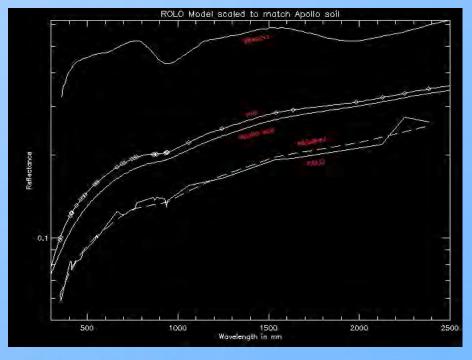
This meets the stability requirement for visible-wavelength radiometer measurements of environment variables for climate change

- 85 SeaWiFS lunar observations
- asymptotic temporal correction applied for each band
- distribution of the individual band plots is the difference in absolute scale between SeaWiFS and the lunar model

Lunar model development — absolute radiometric scale

- Current absolute scale is based on observations of the star Vega
 - Uncertainty in Vega absolute photon flux (astronomical measurements)
- Uncertainty in the lunar model absolute irradiance is 5–10%
 - Significantly exceeds model relative precision
 - Based on comparison with calibrated sources, e.g. field calibration at ROLO in collaboration with NIST, NASA, Univ. Arizona

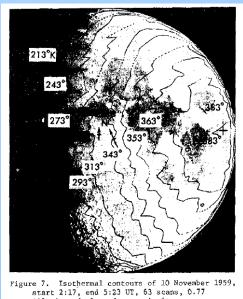
On-axis collimated source at ROLO
• calibrated at NIST

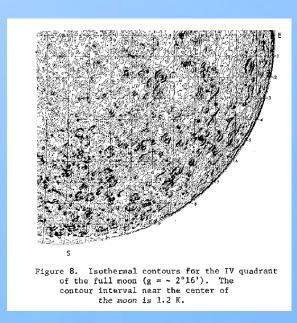


Lunar calibration — applications for the climate mission

- On-orbit sensor stability monitoring
 - Current model capability (precision) can achieve climate requirement
- Instrument cross-calibration and continuity of observational datasets
 - Current cross-calibration capability is 1–3%, dependent on wavelength*
 - For non-overlapping datasets, SI-traceable absolute scale is needed
 - Instruments must view the Moon

*The lunar irradiance model operates in reflectance, which is smooth.




Lunar calibration — challenges in the IR

Possibility has been studied, significant challenges identified

- Temperature range of the sunlit lunar surface ~320–390K
 - 1–2 orders of magnitude larger than typical Earth upwelling radiance
 - 70–80K variations across the surface, requires precise targeting
 - Small-scale, ~5K surface features, requires detailed modeling
- Thermal behavior over the day-night transition must be understood
- Difficulty in acquiring measurements, sufficient number for modeling

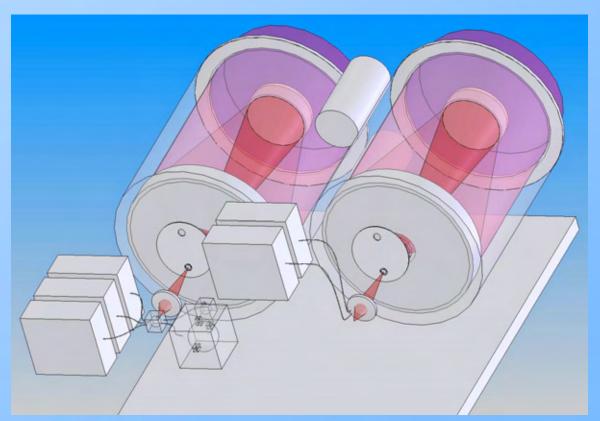
illuminated plotted on a simultaneous photograph after Sinton. 10

Shorthill, R.W. (1969) The Infrared Moon

Future improvements — LUnar Spectral Irradiance (LUSI) proposal

- Based with NIST, collaboration with SDL, USGS, Univ. Hawai'i
- Goal to establish the lunar spectral irradiance to <1% absolute (k=1) with direct tie to NIST radiometric standards
- Hyperspectral coverage, 320–2500 nm, spectral resolution 1–4 nm
- Ground-based component mountaintop observatory site
 - Focus on atmospheric window spectral regions
 - Continuous on-site instrument calibration and characterization
 - Ideal site: Mauna Kea, 4 km altitude
- Flight component high-altitude balloon (or SOFIA, or ??)
 - Extend spectral coverage to full range
 - Minimize atmospheric effects
 - Instrument calibration at NIST before and after flight

LUSI instrumentation


Twin telescopes, 25.4 cm (10") f/4 Cassegrain design

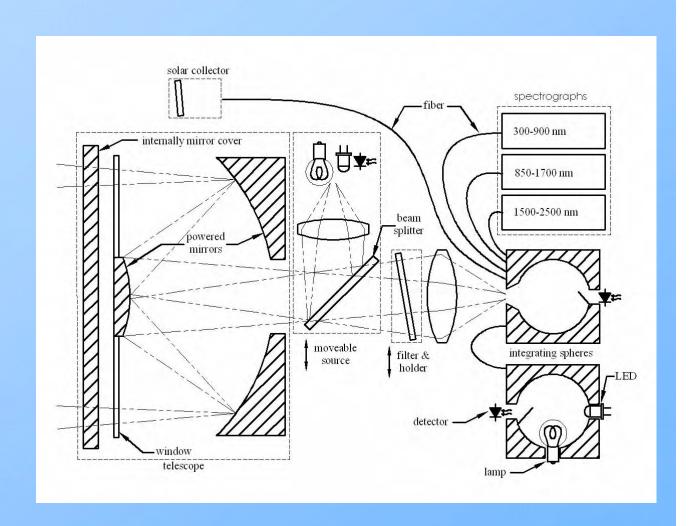
Lunar telescope

- non-imaging system feeds integrating sphere
- 3 fiber-optic coupled spectrographs
- on-board calibration source

Stellar telescope

 direct feed to fiber-optic coupled spectrographs (2)

Emphasis on stability


- sealed optics with dry N₂ purge
- minimal moving parts
- temperature-controlled environment

LUSI instrumentation — lunar system optical layout

Lunar Spectrographs

- f/3 concave flat-field gratings
- 300 900 nm, 1024
 Si photodiode array
 1 nm bandpass
- 850 1700 nm,
 1024 InGaAs
 photodiode array,
 2 nm bandpass
- 1500 2400 nm,
 1024 InGaAs
 photodiode array,
 4 nm bandpass

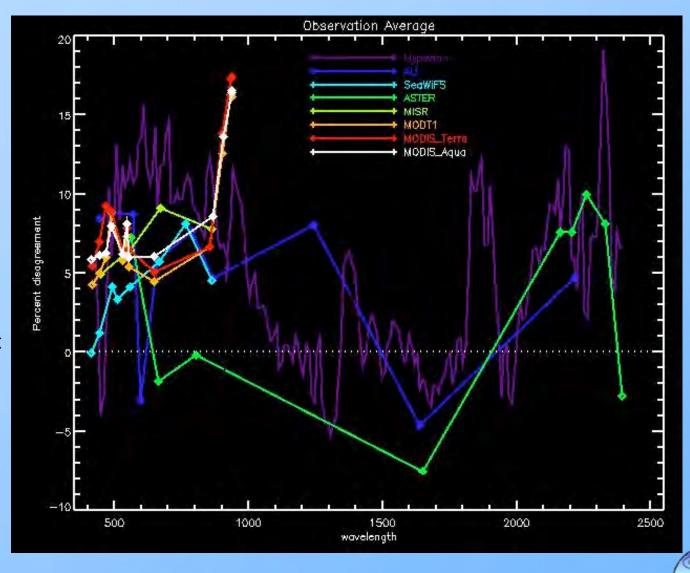
LUSI instrumentation — calibration and characterization

- Complete instrument characterization at NIST
 - SIRCUS facility, direct tie to primary standards
 - Transfer scale to lunar instrument using detector-based methods
 - System-level testing to validate uncertainty goals
- On-site performance monitoring
 - Multi-wavelength LEDs and lamp, with reference detectors, fiber coupled to collection sphere
 - Deployable autocollimating source to measure system throughput
 - Periodic site visits with NIST field calibration facilities

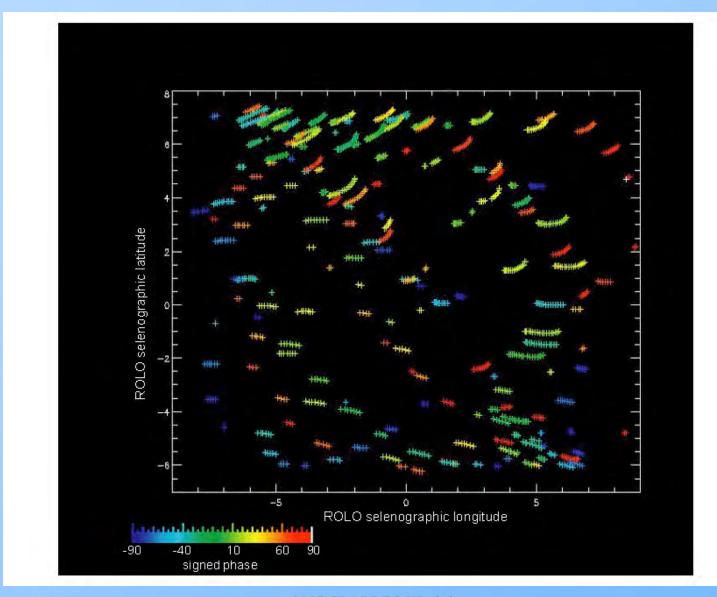
Atmospheric correction expected to dominate uncertainty budget

Summary

- On-orbit sensor response trending with the precision needed for climate-quality measurements is achievable now
- The Moon can provide a common target for cross-calibration of solar-band instruments and consistency of datasets to develop climate records; the instruments must view the Moon
- Improvement is needed in the absolute accuracy of lunar irradiance and traceability to SI radiometric standards
- Lunar calibration supports the CLARREO strategy of testing and verification against independent calibration methods

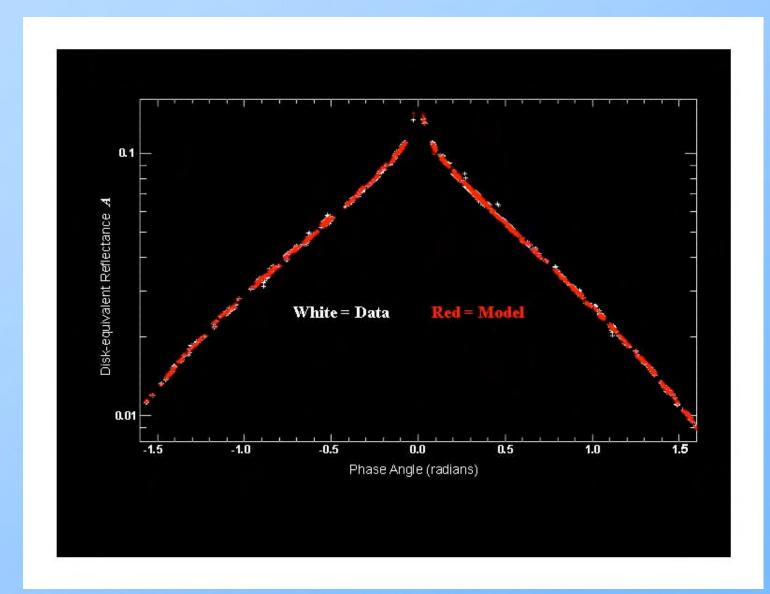

USGS lunar calibration project website:

www.moon-cal.org



Lunar calibration comparison of EOS instruments

- average of all observations for each instrument
- differences
 between
 instruments
 represent current
 best practices



ROLO database phase/libration coverage

Lunar irradiance phase function – model and data

